CHAPTER 8

Pulmonary sarcoidosis

J.P. Lynch 3rd*, E.S. White#

*Division of Pulmonary, Critical Care Medicine and Hospitalists, Dept of Internal Medicine, The David Geffen School of Medicine, University of California, Los Angeles, CA, and #Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.

Correspondence: J.P. Lynch 3rd, The David Geffen School of Medicine at the University of California, Division of Pulmonary, Critical Care Medicine, and Hospitalists, 10833 Le Conte Ave, 37-131 CHS, Los Angeles, CA 90095, USA. Fax: 1 3102068622; E-mail: jplynch@mednet.ucla.edu

Sarcoidosis can affect any organ system [1], but pulmonary manifestations typically dominate [2]. Abnormalities on chest radiographs are detected in 85–95% of patients [2–7]. However, 30–60% of patients with sarcoidosis are asymptomatic, with incidental findings on chest radiographs [2, 6, 8, 9]. The clinical course is heterogeneous; spontaneous remissions occur in nearly two-thirds of patients, but the course is chronic in 10–30% [3–7, 10]. Chronic, progressive pulmonary sarcoidosis may result in severe respiratory failure [11]. Fatality rates ascribed to sarcoidosis range from 2–5% [3–5, 12–14], but rates are lower (<1%) in nonreferral settings [6–9]. In the USA, 87% of deaths attributed to sarcoidosis were secondary to pulmonary complications [15]. In contrast, in Japan, 77% of deaths resulted from cardiac involvement.

Clinical features of pulmonary sarcoidosis

Nonproductive cough, dyspnoea and chest pain are the most common features of pulmonary sarcoidosis, occurring in 30–50% of patients [16]. These features may be more prominent in patients with significant endobronchial or pulmonary parenchymal involvement [2, 17]. In contrast to idiopathic pulmonary fibrosis (IPF), physical findings are usually minimal or absent in pulmonary sarcoidosis. Crackles are present in <20% of patients with sarcoidosis, even when radiographic infiltrates are extensive [2]. Clubbing, which is observed in 25–50% of patients with IPF [18], is rarely observed in sarcoidosis [2]. Fatigue [19] and impaired quality of life (QoL) [20] are far more common among patients with sarcoidosis compared with healthy controls. In one study, the extent of fatigue correlated inversely with the carbon monoxide diffusing capacity of the lung (DL,CO), but not with forced expiratory volume in one second (FEV1), forced vital capacity (FVC), radiographic stage or serological parameters [19].

Chest radiographic features in sarcoidosis

Chest radiographs are abnormal in >85% of patients with sarcoidosis [2–7]. The most characteristic finding (present in 50–85% of cases) is bilateral hilar lymphadenopathy (BHL), often with concomitant enlargement of the right paratracheal lymph nodes [2]. Lymph node involvement at other intrathoracic sites is often present by computed tomography (CT) scans [21, 22]. Unilateral hilar lymphadenopathy on CT is uncommon,
occurring in <10% of cases [23]. Pulmonary parenchymal infiltrates (with or without BHL) are present in 25–50% of patients with sarcoidosis, and preferentially involve the central (rather than peripheral) regions and upper lobes [2, 6]. Large bullae [24, 25], cystic bronchiectasis, or enlarged pulmonary arteries (attributable to secondary pulmonary arterial hypertension (PAH)) may complicate advanced stage III or IV sarcoidosis [26]. Rare features (occurring in 1–3% of patients) include pleural effusions [27], unilateral segmental infiltrates or mass lesions, unilateral hilar adenopathy, large nodular opacities simulating metastases [28, 29], cavitation [30, 31], and diffuse ground-glass opacities [2, 32]. The radiographic features of sarcoidosis are discussed in detail in chapter 18 of this monograph, and will not be reiterated here.

Radiographic classification schema

The radiographic staging system for pulmonary sarcoidosis was developed more than four decades ago [5]. This classification schema defines the following stages: stage 0 (normal); stage I (BHL without pulmonary infiltrates; fig. 1); stage II (BHL plus pulmonary infiltrates; fig. 2); stage III (parenchymal infiltrates without BHL; fig. 3). Stage IV (not universally adopted) refers to extensive fibrosis with distortion or bullae [6, 33] (table 1).

Although individual exceptions exist, the prognosis is best with stage I, intermediate with stage II, and worst with stage III or IV. Spontaneous remissions occur in 60–90% of patients with stage I disease, 40–70% with stage II, 10–20% with stage III, and 0% with stage IV [3–6, 14, 34, 35].

The long-term prognosis is often dictated by the evolution of the disease within the first 2–3 yrs. Several series cited improvement or stability in chest radiographs in >70% of sarcoidosis patients within 2–3 yrs of follow-up. Furthermore, several studies noted that spontaneous remission predicted a low rate (<10%) of late relapse [35–37].

In a study from New South Wales (Australia), chest radiographs normalised in 112 out of 150 (75%) patients presenting with stage I or II sarcoidosis [38]. In a cohort of

![Fig. 1. – a) Posteroanterior and b) lateral chest radiographs of a patient with stage I sarcoidosis. Notice the prominence of the hila on the posteroanterior radiograph. White arrows on the lateral radiograph point to enlarged mediastinal lymph nodes.](image)
Japanese patients with sarcoidosis, chest radiographs cleared within 3 yrs in 68% [39]. A study of 193 Spanish sarcoidosis patients detected persistent abnormalities on chest radiographs in only 22%, 2 yrs after diagnosis [40]. Failure to remit within 2 yrs predicted a chronic or persistent course [40]. A subsequent Danish study showed that 85% of spontaneous remissions occurred within 2 yrs of presentation [4]. Further, among patients who remained in stage II after 2 yrs of observation, chest radiographs eventually

Fig. 2. – a) Posteroanterior and b) lateral chest radiographs of a patient with stage II pulmonary sarcoidosis. Note the prominence of the hilae and enlarged mediastinal lymph nodes. Also seen are increased upper-lobe predominant parenchymal infiltrates.

Fig. 3. – a) Posteroanterior and b) lateral chest radiographs of a patient with stage III/IV sarcoidosis. Note the hilar retraction due to thick fibrous bands in the mid-lung fields. No significantly enlarged hilar or mediastinal lymph nodes are seen.
A recent prospective study in the USA followed 215 sarcoidosis patients for 2 yrs [10]. In most patients, pulmonary function, radiographic stage, and dyspnoea scale did not change during the 2-yr period. Spirometry worsened in 12%. Only 11 out of 176 (6%) with stage 0, I, or II disease progressed to stage III or IV over the 2-yr follow-up period. A total of 50 patients (23%) developed one or more new organ involvement during that time frame [10].

Differing prognoses between studies may reflect ethnic, geographic, or referral biases [41]. A large cohort of 437 Finnish and 457 Japanese patients were followed for 5 yrs [41]. Chest radiographs normalised within 1 yr in 46% of Japanese but only 16% of Finnish patients. After 5-yrs follow-up, the rates were 73% and 40%, respectively (p<0.001). During the 5-yr period, 28 out of 142 (20%) Finnish patients and 43 out of 309 (14%) Japanese patients with initial stage I lesions developed parenchymal infiltrates. At 5 yrs, among patients with initial stage II disease, chest radiographs were normal in 73% of Japanese and 36% of Finnish patients. Among patients with initial stage III disease, chest radiographs had normalised in 35% and 24% of Japanese and Finnish patients, respectively [41].

Additional prognostic factors

Besides the radiographic stages, other clinical factors have prognostic value. The presence of acute inflammatory manifestations (i.e., erythema nodosum, polyarthritis and fever) portend an excellent prognosis, with high rates (>85%) of spontaneous remission [3, 10, 35, 42]. In contrast, factors associated with a poor prognosis and a chronic or relapsing course include: Black race [10, 43–45]; age of onset >40 yrs [3, 40]; hypercalcaemia [3]; extrathoracic disease [3, 43]; lupus pernio [3]; splenomegaly [40]; pulmonary infiltrates on chest radiograph [3, 40]; chronic uveitis, cystic bone lesions, nasal mucosal sarcoidosis [3]; central nervous system and cardiac involvement; and lower annual family income [10].

CT scans

CT scans are superior to conventional chest radiographs in delineating parenchymal, mediastinal, and hilar structures [21, 26, 46, 47]. Characteristic features of sarcoidosis on CT include mediastinal and/or hilar lymphadenopathy, nodular opacities and micronodules along bronchovascular bundles, predilection for mid and upper lung zones, an axial distribution, pleural or subpleural nodules, septal and nonseptal lines, confluent nodular opacities with air-bronchograms (i.e., consolidation), and ground-glass opacities [26, 48] (fig. 4). With advanced disease, architectural distortion, hilar retraction, fibrous bands, bronchiectasis, cystic radioluencies, bullae, and enlarged
pulmonary arteries may be observed [22, 26, 49, 50]. Despite the enhanced accuracy of CT, routine CT is not necessary or cost-effective in the management of sarcoidosis [51]. Chest CT scans may be helpful in the following circumstances: atypical clinical or chest radiographic findings [16, 26], or to detect specific complications in the lung (e.g., bronchiectasis, aspergilloma, pulmonary fibrosis, superimposed infection or malignancy). In a study by Remy-Jardin et al. [52], no correlation was found between CT features and bronchoalveolar lavage (BAL) or other parameters of disease activity, either at presentation or at follow-up [52]. Furthermore, findings on initial CT scan have limited prognostic value, since the disease has potential to evolve over time. Despite these limitations, high-resolution thin-section CT (HRCT) may be helpful in selected patients with stage II or III disease to discriminate active inflammation from fibrosis. Nodules, ground-glass opacities, consolidation, or alveolar opacities suggest granulomatous inflammation, which may reverse with therapy [53, 54]. In contrast, honeycomb change, cysts, coarse broad bands, distortion, or traction bronchiectasis indicate irreversible fibrosis [49, 55]. The salient features and role of CT in the management of sarcoidosis are addressed in chapter 18 of this monograph.

Pulmonary function tests in sarcoidosis

Aberrations in pulmonary function tests (PFTs) are present in ~20% of patients with radiographic stage I sarcoidosis, but in 40–80% of patients with parenchymal infiltrates (stages II, III, or IV) [2–4, 33, 56, 57]. Reductions in lung volumes (e.g., vital capacity (VC) and total lung capacity (TLC)) are characteristic; the DL CO is often reduced, but is less pronounced in sarcoidosis than in IPF [2, 58]. Even in the setting of a normal chest radiograph (stage 0), reductions in FVC or DL CO occur in 15–25% and 25–50% of patients, respectively [56, 59]. Oxygenation is usually preserved until late in the course of sarcoidosis [2].

Airflow obstruction (e.g., reduced FEV1 and expiratory flow rates) and bronchial hyperreactivity occur in 30–50% of sarcoid patients with pulmonary parenchymal involvement [57, 59–61]. In one study of 107 patients with newly diagnosed sarcoidosis,
the FEV1/FVC ratio was reduced in 61 patients (57%), reductions in DL,CO were noted in 29 (27%), but only seven (6%) manifested restriction [59]. Airflow obstruction was more frequent with worsening radiographic stage. In another study of 18 patients with sarcoidosis, all of whom had reduced lung volumes or DL,CO, concomitant airways obstruction was present in all 18 when sensitive tests were employed (e.g., frequency dependence of compliance, airway resistance, closing volumes) [62]. Airflow obstruction may be suggested on CT when bronchial mural thickening, small airway narrowing, or patchy air trapping is present [63–65]. Patients with advanced pulmonary sarcoidosis (radiographic stages III or IV) may exhibit severe decrements in FEV1/FVC [57]. Viskum and Vestbo [66] noted a higher mortality risk (OR=1.9) among sarcoid patients with a percentage of predicted (% pred) FEV1/FVC ratio <70% compared with patients with >70% pred. Airflow obstruction may reflect narrowing of bronchial walls (via granulomatous lesions or fibrotic scarring) [67–69]; peribronchiolar fibrosis [70]; compression by enlarged lymph nodes [2]; airway distortion caused by pulmonary fibrosis [57, 71]; small airways disease [59, 62, 72]; or bronchial hyperreactivity [17]. Increased airway hyperreactivity in response to methacholine has been noted in patients with sarcoidosis [73, 74]. In one study, 50% of patients with stage I or II sarcoidosis exhibited bronchial hyperreactivity following methacholine challenge [17]. Clinically, this may manifest as chronic, hacking cough. The mechanism of this bronchial hyperreactivity has not been elucidated, but likely reflects granulomatous inflammation involving the bronchial mucosa [67]. Clinical bronchiectasis is a rare complication of stage IV sarcoidosis [75].

Impaired inspiration muscle endurance (IME) was noted in sarcoid patients with normal lung function compared with healthy controls [76]. Recently, Brancalone et al. [77] corroborated reductions in IME in a cohort of sarcoid patients that correlated with impairments in health-related QoL.

Alterations in cardiopulmonary exercise tests (CPETs) have been noted in 28–47% of patients with sarcoidosis [71, 78–80]. Typical aberrations include ventilatory limitation, increased dead space/tidal volume (VT) or widened alveolar-arterial O2 gradient with exercise [71, 78]. CPETs may be abnormal when static PFTs are normal [71, 75]. In one study of 30 sarcoidosis patients with normal spirometry, ventilatory abnormalities were noted during maximal exercise testing in 14 (47%) [71]. A prospective study of 19 sarcoid patients with normal PFTs (including DL,CO) and normal echocardiograms noted reductions in maximal workload, maximal oxygen consumption (VO2,max), VT and heart rate compared with age- and sex-matched healthy sedentary controls [75]. Exercise limitation in sarcoidosis patients without pulmonary impairment could reflect an impaired heart rate response to exercise.

Exercise-induced desaturation usually correlates with reductions in DL,CO [71, 79, 81, 82]. Karetzky and McDonough [79] found that DL,CO<55% had a high sensitivity (85%) and specificity (91%) in predicting a fall in arterial oxygen tension (PaO2) with exercise in patients with pulmonary sarcoidosis [79]. Arterial desaturation and DL,CO correlate with the extent and severity of sarcoidosis as assessed by CT [81]. In a recent study, alveolar membrane diffusing capacity and DL,CO were the strongest predictors of gas exchange abnormalities during exercise [83]. In contrast, neither lung volumes nor expiratory flow rates correlated with exercise gas exchange parameters [83]. Arterial desaturation with exercise is rare in patients with radiographic stage I disease or preserved DL,CO [82].

One study of patients with mild pulmonary sarcoidosis noted abnormalities on CPETs in nine out of 20 patients (45%) [78]. Reduced VO2,max at the anaerobic threshold was low, and/or the rate of increase of VO2,max was abnormal relative to work rate or heart rate, suggesting a defect in cardiac circulatory function. Resting and exercise echocardiography revealed normal left ventricular function in all patients, but right
ventricular dysfunction or hypertrophy was evident in five. Abnormal response of $V'\varphi_{O2,\text{max}}$ during exercise may reflect subclinical right heart dysfunction.

Although CPETs is more sensitive than static PFTs in predicting work and exercise capacity, the practical value of CPETs is limited. Spirometry and oximetry are usually adequate to follow the course of the disease. For patients with more severe disease, a noninvasive 6-minute walk test provides additional quantitative data.

Physiological aberrations correlate only roughly with histological severity of the disease [70, 84–87]. Three quantitative morphometric studies of 162 open lung biopsies from patients with sarcoidosis found that no physiological parameter predicted the histologic severity of the disease [70, 85, 86]. Mean values of physiological parameters were lower among patients with advanced fibrosis and least deranged with mild disease, but the degree of overlap was considerable. Importantly, none of the physiological parameters discriminate alveolitis (which might be amenable to therapy) from irreversible fibrosis [86, 87].

The extent of pulmonary physiological impairment correlates with severity of disease by chest radiographs [88–91] or CT scanning [21, 22, 52, 90], but correlations are imprecise. The extent of disease on CT scans correlates only modestly with functional impairment [22, 52, 90]. Correlations between physiological parameters and HRCT are improved when semi-quantitative scoring systems are applied [52, 90, 92, 93]. Semi-quantitative scores from CT scans correlated inversely with FVC ($r=-0.81$) and to a lesser extent, with DL_{CO} ($r=-0.49$) [21]. Hansell et al. [94] confirmed inverse correlations between a reticular pattern on HRCT scan and several physiological parameters (i.e., FVC, FEV1, FEV1/FVC, and DL_{CO} [94]. Muers et al. [92] noted that reticular and fibrotic abnormalities on HRCT scan correlated modestly with physiological aberrations, but mass lesions or confluence did not. The pattern of CT may reflect underlying pathology. A honeycomb pattern is most often associated with restriction and low DL_{CO}, whereas bronchial distortion is usually associated with lower expiratory flow rates [50]. A linear pattern was associated with the least functional impairment [50]. More recently, Drent et al. [95] found that HRCT correlated with several physiological parameters (i.e., FEV1, FVC, DL_{CO}, maximum $P_{a,\text{O2}}$), and was more sensitive than chest radiographs in detecting pulmonary disability or abnormal gas exchange [95]. In the study by Drent et al. [95], specific findings on CT (e.g., thickening or irregularity of bronchovascular bundles, intra-parenchymal nodules, septal and nonseptal lines, and focal pleural thickening) correlated with pulmonary functional impairment, whereas other features (e.g., focal consolidations, ground-glass opacities, or enlarged lymph nodes) were of minor importance [95]. One recent study examined initial and follow-up HRCT scans in 40 patients with pulmonary sarcoidosis [96]. Predominantly nodular or multiple large nodules disappeared or decreased in size at follow-up. A conglomeration pattern shrank and evolved into bronchial distortion and a decline in FEV1/FVC ratio [96]. Interestingly, ground-glass opacities and consolidation evolved into honeycombing, and were associated with a decline in FVC [96]. Given the imprecise correlations between CT and physiological parameters, direct measurement of PFTs is critical to assess the extent and degree of pulmonary functional impairment.

Influence of pulmonary function on prognosis

Although physiological parameters at the onset do not predict long-term outcome in patients with sarcoidosis [56, 97–99], mortality is higher among patients with severe physiological impairment [11]. Sequential studies are important to follow the course of the disease and assess response to therapy. Several studies have shown that VC improves
more frequently than \(DL_{\text{CO}}\) [56, 100, 101], TLC [102], or arterial oxygenation [87]. Importantly, changes in VC and \(DL_{\text{CO}}\) are usually concordant (in the same direction); discordant (opposite direction) changes occur in \(<5\%\) of patients [10, 87]. A recent prospective study in the USA found excellent concordance between changes in FVC and FEV1 in a cohort of 193 sarcoidosis patients [10]. Changes in FVC and FEV1 were concordant in 155 patients (80.3\%) but were never discordant. Measurement of oxygen saturation at rest or during exercise is no more sensitive than VC or \(DL_{\text{CO}}\) [87]. Given the variability of \(DL_{\text{CO}}\) [56], and the expense of obtaining lung volumes, spirometry and flow-volume loops are the most useful and cost-effective parameters to follow the course of the disease. Additional studies, such as \(DL_{\text{CO}}\), TLC, or gas exchange have a role in selected patients.

Criteria for assessing "response" or improvement have not been validated. Most investigators define a change in FVC \(>10–15\%\) or \(DL_{\text{CO}}\) \(>20\%\) as significant [87, 103]. Responses to therapy are usually evident within 6–12 weeks of initiation of therapy [56, 104].

Laboratory features

Serum angiotensin converting enzyme (ACE) is increased in 30–80\% of patients with sarcoidosis, and may be a surrogate marker of total granuloma burden [2, 105]. False positives are noted in \(<20\%\) of patients with other pulmonary disorders. However, ACE may be normal in patients with active disease. The present authors believe ACE provides ancillary information when the activity of sarcoidosis is uncertain on clinical grounds. However, ACE should never be used in isolation to dictate therapeutic interventions. More recently, Rothkrantz-Kos et al. [106] found that serum levels of soluble interleukin (IL)-2 receptor (sIL-2R) appeared to be more useful for monitoring disease severity in sarcoidosis. Moreover, others have demonstrated that extrapulmonary manifestations of sarcoidosis are accompanied by increases in sIL-2R, suggesting that sIL-2R may serve as a marker of disease activity [107].

Historically, the Kveim-Siltzbach skin test was used to diagnose sarcoidosis [108]. The current authors see no current clinical role for the Kveim-Siltzbach skin test [109].

BAL in sarcoidosis

Interaction between alveolar macrophages and T-helper (Th) CD4+ cells leads to a Th1-skewed cytokine profile that drives the granulomatous process [109]. Lung T-cells from patients with sarcoidosis spontaneously release Th1 cytokines, such as interferon (IFN)-\(\gamma\) [110] and IL-2 [111].

Clinical manifestations of pulmonary sarcoidosis depend on the intensity of alveolar inflammation. In some cases, the alveolitis remains subclinical, whereas others present with cough, dyspnoea, or chest pain. Alveolitis in sarcoidosis reflects a local expression of a disseminated immunological reaction. Interestingly, in cases of extrathoracic sarcoidosis where pulmonary symptoms are clinically lacking, features of an alveolitis suspicious for sarcoidosis can be found, and, therefore, BAL fluid analysis may be of additional diagnostic value [112]. Typically, BAL fluid in pulmonary sarcoidosis reveals lymphocytosis, low or normal granulocytes, and an increased CD4+/CD8+ ratio [113–115]. These features are not specific, as there is overlap between other interstitial lung disorders [113, 115]. However, BAL fluid cell profiles may narrow the differential diagnosis [113, 115]. BAL has provided invaluable insight into the pathogenesis of sarcoidosis [109]. Recently, it was demonstrated that the number of polymorphonuclear
neutrophils in BAL fluid is useful to distinguish sarcoidosis patients with a more favourable outcome from those having a more severe course [116, 117]. Furthermore, increased numbers of mast cells in BAL fluid [73, 118] were associated with a worse prognosis in some studies, but significant variability exists. Most studies have found no significant correlations between initial BAL CD4+/CD8+ ratios and subsequent outcome or response to therapy. In fact, intense alveolitis is characteristic of Löfgren's syndrome, which spontaneously remits in >85% of patients [114, 119, 120]. Provided its limitations are kept in mind and considered in the context of information gained from conventional ancillary diagnostic tests, together with a thorough clinical evaluation, there appears to be a place for BAL in the diagnostic work-up of pulmonary inflammation, including sarcoidosis.

Radionuclide techniques

Radionuclide techniques (e.g., 67 gallium (Ga) citrate [121, 122]), scintigraphy with somatostatic analogues (111In-pentreotide [123] or 99mtechnetium-labelled depreotide [124]) or fluoro-2-deoxyglucose positron emission tomography scans [125–127] have been employed to diagnose or stage sarcoidosis. The role of these techniques is reviewed in depth in chapter 19 of this monograph.

Diagnosis of pulmonary sarcoidosis

Flexible fiberoptic bronchoscopy with transbronchial lung biopsy (TBLB) achieves diagnostic yields of 60–90%, even among patients with radiographic stage I disease [128, 129]. Transbronchial needle aspiration biopsies (TBNA) with Wang 18-, 19- or 22-gauge cytology needles are diagnostic in 63–90% of patients with mediastinal and/or hilar adenopathy on chest CT [23, 130–135]. The combination of TBNA and TBLB may have a higher yield than either procedure alone [136]. Diagnostic cytological criteria for sarcoidosis by TBNA include: the presence of epithelioid cell granulomas, lymphocytes, clusters or palisading epithelioid histiocytes, multinucleated giant cells with no or minimal necrosis; and negative stains for fungi and acid-fast bacteria [23, 134]. Damage to the bronchoscope may complicate TBNA, particularly when performed by individuals with limited experience [137]. One study suggested that fine-needle aspiration (FNA) is underutilised to diagnose sarcoidosis and is cost-effective [138].

Mediastinal lymph node biopsies

CT-guided transthoracic FNA, with or without core needle biopsy, may be useful to diagnose malignant or benign lesions involving mediastinal or subcarinal lymph nodes (yields up to 78%) [139]. Complications of transthoracic FNA include pneumothoraces (10–60%) and haemoptysis (5–10%) [139]. Severe bleeding is rare, but has been described with core biopsy. Endoscopic ultrasound (EUS)-guided FNA has been used to diagnose mediastinal masses, primarily in patients with suspected malignancy [140], but experience is limited in patients with sarcoidosis [141]. EUS gives an excellent overview of mediastinal structures, including the paraoesophageal space, aortopulmonary window, subcarinal region [142]. Surgical procedures to access mediastinal nodes include: 1) cervical mediastinoscopy [143–145]; the Chamberlain procedure (a parasternal mini-thoracotomy to biopsy
Specific complications of intrathoracic sarcoidosis

Necrotising sarcoid angiitis

Necrotising sarcoid angiitis and granulomatosis, initially described by Liebow in 1973 [148], is a variant of sarcoidosis characterised by pulmonary vasculitis, granulomas, and pulmonary nodules on chest radiographs [149–153]. Histological features include: 1) a granulomatous vasculitis involving arteries and veins; 2) confluent non-necrotising granulomata involving the bronchi, bronchioles, and lung; 3) variable degrees of fibrosis; and 4) extensive parenchymal necrosis [149, 152]. Systemic vasculitis does not occur. Clinical and radiographic features of necrotising sarcoid angiitis and granulomatosis are similar to "nodular sarcoid" [28, 154–156]. Cardinal histological features of nodular sarcoidosis are focal nodules composed of masses of granulomas and hyalinised connective tissue [154]. The present authors believe that necrotising sarcoid angiitis and nodular sarcoid are simply variants of sarcoidosis. Prognosis of these entities is generally excellent. The disease resolves (either spontaneously or in response to therapy) in most patients.

Bronchostenosis

Stenosis or compression of bronchi may result from granulomatous inflammation of the bronchial wall, extrinsic compression from enlarged hilar nodes, or distortion of major bronchi caused by end-stage parenchymal sarcoidosis [68, 69, 157–159]. Atelectasis of involved lobes or segments (particularly the right middle lobe) may result [157, 158, 160–162]. Bronchostenosis was detected in 2–26% of patients with sarcoidosis undergoing bronchoscopy in two studies [68, 159]. One retrospective study of 2,500 patients with sarcoidosis identified 18 patients with >50% stenosis of proximal bronchi [69]. Three bronchoscopic patterns were observed, including single focal stenosis, multiple focal stenoses and diffuse narrowing of the bronchial tree [69]. The bronchial mucosa appeared oedematous and inflamed at the site of stenosis in all cases. Endobronchial biopsies showed noncaseating granulomata in 77% of patients [69]. Typical clinical features of proximal endobronchial stenosis include dyspnoea, cough, wheezing and extrapulmonary manifestations [68, 69]. Wheezing, high-pitched inspiratory "squeaks", or stridor may be evident on chest auscultation in patients with symptomatic bronchostenosis [68]. Helical CT scans are useful to determine the extent and nature of stenotic lesions in the lower respiratory tract [63], but false positive results were noted in 8% [63] and 14% [163] of cases in two series. Early initiation of corticosteroid therapy may be efficacious in ameliorating symptoms and pulmonary dysfunction. Conversely, delay in therapy may result in acquired fixed stenoses and persistent ventilatory defects [69]. Dilatation of endobronchial stenoses may provide relief in patients who are refractory to medical therapy [164].

Mycetomas

Mycetomas (typically due to Aspergillus spp.) may develop in cystic spaces (typically in the upper lobes) in patients with advanced (radiographic stage III or IV) sarcoidosis.
Ipsilateral pleural thickening usually antedates the fungus ball or air-crescent sign [168]. Mycetomas are often asymptomatic, but fatal haemorrhage can occur when Aspergillus invades vessel walls [161, 166, 169]. Surgical resection is advised for localised lesions in patients able to tolerate surgery [165–167]. However, surgery may be contraindicated in patients with severe parenchymal disease or extensive pleural adhesions [166, 167]. In such cases, topical or intracavitary therapy has been tried, with anecdotal successes, but experience is limited [170, 171]. Systemic antifungal therapy is of unproven value. Bronchial embolisation has been successful to control intractable bleeding [165].

Pleural involvement in sarcoidosis

Clinically-significant pleural manifestations (e.g., pneumothorax, pleural effusions, chylothorax, or pleural thickening) occur in 2–4% of patients with sarcoidosis [27, 172–174]. Sarcoid pleural effusions may be either transudative or exudative; lymphocytosis occurs in two-thirds of cases [27, 172]. Pneumothorax may complicate advanced fibrocystic sarcoidosis [173]. Chylothorax is a rare complication of sarcoidosis (only a few cases have been described) [2, 175–177].

Pulmonary vascular involvement in sarcoidosis

As sarcoid granulomatous lesions follow pulmonary vessels, incidental histological involvement is common, noted in 42–89% of open lung biopsies from patients with pulmonary sarcoidosis [70, 178]. However, clinically significant pulmonary vascular involvement is uncommon. PAH has been noted in 1–5% of patients with sarcoidosis [179–183]. The incidence is considerably higher among patients with advanced fibrocystic sarcoidosis [184–187]. Mechanism(s) responsible for PAH in sarcoidosis probably include: 1) hypoxic vasoconstriction [180]; 2) infiltration and/or obliteration of the pulmonary vasculature by the granulomatous, fibrotic response [188]; and/or 3) extrinsic compression of major pulmonary arteries by enlarged lymph nodes [179]. In one study of patients with stage III sarcoidosis, pulmonary artery (PA) pressures were elevated in 50% of patients at rest and 100% during exercise [184]. Chest CT scans may be useful to predict the presence of PAH in patients with parenchymal lung disease [189]. CT features which suggest PAH include: main PA diameter >29 mm; segmental artery-to-bronchus ratio >1:1 in three out of four lobes [189]; ratio of the diameter of the main PA and of the ascending aorta >1 [190]. Two recent studies evaluated PA pressures in patients with end-stage pulmonary sarcoidosis awaiting lung transplantation (LT) [185–187]. Pulmonary hypertension was an independent predictor of mortality among patients with sarcoidosis listed for LT [185, 187]. The role of vasodilators in sarcoidosis-associated PAH has not been elucidated, but short- and long-term responses were noted in case reports [180] or small series [188, 191].

Other rare vascular complications of sarcoidosis (limited to a few case reports) include: pulmonary arterial stenoses from granulomatous involvement of the vessels [192, 193]; extrinsic compression of pulmonary arteries by enlarged hilar lymph nodes [194, 195] or fibrosing mediastinitis [2]; and pulmonary veno-occlusive disease (resulting from obstruction of interlobular septa veins by granuloma or perivascular fibrosis) [196, 197].

Superior vena cava syndrome

Rarely, extensive fibrosis of mediastinal or vascular structures results in narrowing or obstruction of innominate veins [198], superior vena cava (SVC) [199], or bronchi [200] in
patients with sarcoidosis. The current authors are aware of only six published cases of SVC syndrome complicating sarcoidosis [193, 199, 201–204]. Extensive mediastinal lymphadenopathy compressing the SVC was a universal feature.

Pulmonary embolism

Sarcoidosis involving the lung has been linked to pro-coagulant activity in BAL fluid [205], and published case reports have described patients with sarcoidosis and vascular thrombosis in the absence of known risk factors [206, 207], thus, raising the question of an association between sarcoidosis and venous thromboembolic disease. To the best of the present authors' knowledge, no reports defining such an association have been published. However, the presentation of sarcoidosis is known to mimic acute pulmonary embolism. Numerous case reports have described patients presenting with acute onset chest pain and dyspnoea accompanied by ventilation-perfusion studies, suggestive of pulmonary embolism [208–212]. Subsequent evaluation (with either pulmonary angiogram or 67Ga scanning) demonstrated evidence of pulmonary (and, in some cases, extrapulmonary) sarcoidosis with compression of lobar or segmental pulmonary arteries by enlarged lymph nodes. Furthermore, serological testing for D-dimer in suspected pulmonary embolism may potentially confound the diagnosis of sarcoidosis. In one study of 28 patients with newly diagnosed sarcoidosis, Shorr and Hnatiuk [213] observed elevated D-dimer titres (as assessed by latex agglutination) in 11 (39.3%) subjects. These investigators also noted a positive correlation among elevated D-dimer titres (defined as >1:2), interstitial involvement with sarcoidosis, lower DLCO, elevated serum ACE levels, and presence of dyspnoea [213]. Hence, these data suggest that sarcoidosis should be considered in the differential diagnosis of acute pulmonary embolism.

Sarcoidosis in HIV-infected patients

Sarcoidosis (pulmonary or extrapulmonary) may rarely complicate HIV infection [214–217]. Chest radiographic [214] and histological [218] findings are similar to sarcoidosis in non-HIV infected patients. Most cases of sarcoidosis in HIV-infected patients developed after beginning highly active antiretroviral therapy (HAART) [214, 217–220], but sarcoidosis can occur prior to institution of HAART [214, 221]. Intense CD4+ alveolitis on BAL fluid analysis was noted in two HIV-infected patients receiving HAART [218], whereas earlier reports of sarcoidosis complicating HIV cited CD8+ alveolitis [222]. A retrospective study of seven patients with sarcoidosis and HIV infection noted that CD4+ lymphocyte counts exceeded 200 cells·μL⁻¹ in all patients [223], suggesting that CD4+ lymphocytes were instrumental to the granulomatous process.

Sarcoidosis complicating type-1 interferon therapy

Type 1 IFNs (e.g., IFN-α or IFN-β), used to treat viral hepatitis, multiple sclerosis, and diverse autoimmune and malignant disorders, may evoke a Th1 lymphocyte bias and thereby amplify granulomatous inflammation [224, 225]. Although uncommon, new-onset or recurrent sarcoidosis may complicate IFN-α or IFN-β therapy [224–230]. Most cases remit with IFN withdrawal or dose reduction, but corticosteroids are required in some patients [225, 231].
Treatment of sarcoidosis

Treatment of sarcoidosis remains controversial. Corticosteroids (CS) are the cornerstone of therapy for severe or progressive sarcoidosis (pulmonary or extrapulmonary), and often produce dramatic resolution of the disease [33, 232]. The long-term benefit of CS therapy is less clear, as relapses may occur upon taper or cessation of therapy [44, 45, 233]. A few prospective, randomised studies found no long-term benefit with CS among patients with pulmonary sarcoidosis [103, 234–238]. However, these studies included patients with normal or near normal pulmonary function, and the rates of spontaneous remissions were high. Patients with severe or progressive disease were excluded from these studies. Interpretation of efficacy of therapy is confounded by heterogeneous patient populations, a high rate of spontaneous remissions, differing doses and duration of therapy, inability to discriminate the effects of therapy from the natural history of the disease, and lack of validated standards for disease activity. A multicentre, prospective, randomised trial sponsored by the British Thoracic Society supports the use of CS for patients with chronic persistent radiographic infiltrates [36]. In the study by Gibson et al. [36], patients with stage II or III sarcoidosis and persistent radiographic infiltrates after 6 months of observation were randomised to prednisolone or no therapy. At long-term follow-up, PFTs improved in the CS-treated cohort. Thus, CS may attenuate loss of pulmonary function, even in asymptomatic patients. Extensive clinical experience suggests that CS are efficacious in patients with active, symptomatic disease involving lungs or extrapulmonary organs [1, 33, 44]. The decision to treat requires a careful assessment of acuity and severity of disease, likelihood of spontaneous remission, and risks associated with therapy. Treatment should be circumscribed and focused. Treatment is rarely appropriate for stage I disease, but a trial of CS is reasonable in symptomatic patients with progressive or persistent pulmonary infiltrates or significant physiological dysfunction. Alternative therapeutic modalities are reserved for patients failing or experiencing adverse effects from CS [1, 232, 239–245]. Medical treatment of sarcoidosis is discussed in detail in chapter 20 of this monograph.

Lung transplantation for sarcoidosis

LT (either single or bilateral) is a viable option for patients with end-stage pulmonary sarcoidosis refractory to medical therapy [186]. Registry data from the International Society for Heart and Lung Transplantation (ISHLT) noted that sarcoidosis was the indication for lung transplantation in 287 patients (2.6% of all lung transplants performed from 1995 to June 2003) [246]. Mortality rates among sarcoidosis patients awaiting transplantation are high (27–53%) [185, 187]. Arcasoy et al. [185] analysed 43 patients with sarcoidosis awaiting LT. Mean PA pressure was an independent predictor of death. Further, right atrial pressure >15 mmHg conferred a 5.2-fold increase in mortality [185]. In one study of sarcoi patients listed for transplant, Black race and increased severity of illness were independent predictors of 30-day mortality [186]. In a subsequent retrospective study of all patients in the USA listed for LT, the following parameters were independently associated with increased mortality: Black race, the amount of supplemental oxygen used and mean PA pressures [187]. Surprisingly, PFTs did not correlate with mortality. These investigators correctly noted that data predicting mortality for other types of interstitial lung diseases may not apply to sarcoidosis [187]. Short- and late-term mortality rates following LT for sarcoidosis were higher compared with lung transplants performed for other diseases [186, 246]. Data from the ISHLT cited 1-, 3-, and 5-yr survival rates of 67%, 53% and 45%, respectively, among sarcoidosis
patients undergoing LT [246]. In a retrospective review of experience in the USA from 1995–2000, 30-day survival post-lung transplant was 83% among 133 patients with sarcoidosis compared with 91% among LT recipients for other conditions (p=0.002) [247]. Others authors cited worse outcomes among African Americans receiving kidney [248] or liver transplants [249]; this may reflect greater major histocompatibility polymorphisms or immunological hyperreponsiveness among African Americans.

Recurrent non-necrotising granulomas have been noted in the transplanted allografts in up to 35% of patients [250–252], but are not usually associated with symptoms [252]. Although data are sparse, the presence of mycetomas was associated with a worse prognosis post-transplant [253], and is considered by many centres to be a contra-indication to performing LT.

Summary

Sarcoidosis is a multi-systemic inflammatory disorder, but affects the lungs in ~90% of cases. Nonproductive cough, dyspnoea and chest pain are the most common features of pulmonary sarcoidosis.

The diagnosis of pulmonary sarcoidosis is suggested by bilateral hilar lymphadenopathy, with or without parenchymal changes, on chest radiographs, and is supported by noncaseating granulomata in tissue biopsies. Radiographic staging of pulmonary sarcoidosis, as well as clinical and laboratory findings can be prognostic.

Treatment of pulmonary sarcoidosis typically includes corticosteroids, but other therapeutic agents may have benefit, and treatment needs to be individualised. Lung transplantation remains a viable therapeutic alternative for patients who do not respond to pharmaceutical agents.

Keywords: Corticosteroids, interstitial lung disease, lung transplantation, lymphadenopathy, transbronchial lung biopsy.

References

PULMONARY SARCOIDOSIS

PULMONARY SARCOIDOSIS

PULMONARY SARCOIDOSIS

